IN COLLABORATION WITH IVTB

Diploma in Information Technology

Cohort DIP/03/Full Time

Examinations for 2003 – 2004 / Semester 1

MODULE: MATHS FOR DIGITAL SYSTEM

MODULE CODE: BISE012

Duration: 2 Hours

Instructions to Candidates:

1. Answer any three questions.
2. Always start a new question on a fresh page.
3. All questions carry equal marks.
4. Total marks 75.

This question paper contains 4 questions and 5 pages.
Question 1

(a) Solve the recurrence relation

\[u_{n+2} = 5u_{n+1} - 6u_n, \quad n \geq 0 \]

with

\[u_0 = 12 \quad \text{and} \quad u_1 = 31. \]

[10 marks]

(b) Use mathematical induction to prove that

\[1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n}{6} (n + 1)(2n + 1) \]

for all positive integers \(n \).

[8 marks]

(c) Suppose \(f : \mathbb{R} \rightarrow \mathbb{R} \) is defined by

\[f(x) = \lfloor x \rfloor. \]

Sketch the graph of \(f \) over the interval \(-3 \leq x \leq 3\). Hence, find \(f^{-1}(\{0\}) \) and \(f^{-1}(\{0,1\}) \).

[7 marks]
Question 2

(a) The function $g : \mathbb{R} \rightarrow \mathbb{R}$ is defined as follows

$$g(x) = x^2 + 8x + 15, \quad x < -4$$

Determine whether g is invertible and if it is, find its inverse. [7 marks]

(b) Suppose $h : A \rightarrow \mathbb{R}$ is defined by

$$h(x) = \frac{3x}{x + 4},$$

where $A = \{x \in \mathbb{R} | x \neq -4\}$. Show that h is injective. [7 marks]

(c) Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$ for all sets A and B. [11 marks]
Question 3

(a) Find an expression for the output of the following circuit. (Do not simplify your answer)

(b) Use the Karnaugh map to simplify the expression

\[y = \overline{A} \overline{B} \overline{C} + BC + \overline{A}B. \]

[5 marks]

(c) Simplify the following expressions using Boolean algebra.

(i) \[z = \overline{A}C(\overline{A}BD) + \overline{A}BC \overline{D} + A\overline{B}C \]

(ii) \[x = (\overline{A} + B)(A + B + D)\overline{D} \]

[12 marks]
Question 4

(a) Perform the following conversions:

(i) 5674_{10} to base 2
(ii) 273_{8} to base 2
(iii) 524_{10} to base 8
(iv) $FF1_{16}$ to base 8
(v) 100101101001 (BCD) to decimal

[12 marks]

(b) Consider the truth table below:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(i) Use the Karnaugh map method to find the simplified form of the output z.
(ii) Draw a logic circuit that represents the output z obtained above.

[13 marks]